39 research outputs found

    Fluid-structure interaction simulation of prosthetic aortic valves : comparison between immersed boundary and arbitrary Lagrangian-Eulerian techniques for the mesh representation

    Get PDF
    In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results

    Predictors of packed red cell transfusion after isolated primary coronary artery bypass grafting – The experience of a single cardiac center: A prospective observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preoperative patients' characteristics can predict the need for perioperative blood component transfusion in cardiac surgical operations. The aim of this prospective observational study is to identify perioperative patient characteristics predicting the need for allogeneic packed red blood cell (PRBC) transfusion in isolated primary coronary artery bypass grafting (CABG) operations.</p> <p>Patients and Methods</p> <p>105 patients undergoing isolated, first-time CABG were reviewed for their preoperative variables and followed for intraoperative and postoperative data. Patients were 97 males and 8 females, with mean age 58.28 ± 10.97 years. Regression logistic analysis was used for identifying the strongest perioperative predictors of PRBC transfusion.</p> <p>Results</p> <p>PRBC transfusion was used in 71 patients (67.6%); 35 patients (33.3%) needed > 2 units and 14 (13.3%) of these needed > 4 units. Univariate analysis identified female gender, age > 65 years, body weight ≤ 70 Kg, BSA ≤ 1.75 m<sup>2</sup>, BMI ≤ 25, preoperative hemoglobin ≤ 13 gm/dL, preoperative hematocrit ≤ 40%, serum creatinine > 100 μmol/L, Euro SCORE (standard/logistic) > 2, use of CPB, radial artery use, higher number of distal anastomoses, and postoperative chest tube drainage > 1000 mL as significant predictors. The strongest predictors using multivariate analysis were CPB use, hematocrit, body weight, and serum creatinine.</p> <p>Conclusion</p> <p>The predictors of PRBC transfusion after primary isolated CABG are use of CPB, hematocrit ≤ 40%, weight ≤ 70 Kg, and serum creatinine > 100 μmol/L. This leads to better utilization of blood bank resources and cost-efficient targeted use of expensive blood conservation modalities.</p

    Type A Aortic Dissection in Marfan Syndrome

    No full text

    HO-1 concentrations 24 hours after cardiac surgery are associated with the incidence of acute kidney injury: a prospective cohort study

    No full text
    Attila Magyar,1,2 Martin Wagner,2&ndash;4 Phillip Thomas,1,2 Carolin Malsch,2 Reinhard Schneider,3 Stefan St&ouml;rk,4,5 Peter U Heuschmann,2,4,6 Rainer G Leyh,1 Mehmet Oezkur1,21Department of Cardiovascular Surgery, University Hospital W&uuml;rzburg, W&uuml;rzburg, Germany; 2Institute of Clinical Epidemiology and Biometry, University of W&uuml;rzburg, W&uuml;rzburg, Germany; 3Division of Nephrology, Department of Medicine I, University Hospital W&uuml;rzburg, W&uuml;rzburg, Germany; 4Comprehensive Heart Failure Center, University of W&uuml;rzburg, W&uuml;rzburg, Germany; 5Division of Cardiology, Department of Medicine I, University Hospital W&uuml;rzburg, W&uuml;rzburg, Germany; 6Clinical Trial Center W&uuml;rzburg, University Hospital W&uuml;rzburg, W&uuml;rzburg, Germany Background: Acute kidney injury (AKI) is a serious complication after cardiac surgery that is associated with increased mortality and morbidity. Heme oxygenase-1 (HO-1) is an enzyme synthesized in renal tubular cells as one of the most intense responses to oxidant stress linked with protective, anti-inflammatory properties. Yet, it is unknown if serum HO-1 induction following cardiac surgical procedure involving cardiopulmonary bypass (CPB) is associated with incidence and severity of AKI. Patients and methods: In the present study, we used data from a prospective cohort study of 150 adult cardiac surgical patients. HO-1 measurements were performed before, immediately after and 24 hours post-CPB. In univariate and multivariate analyses, the association between HO-1 and AKI was investigated. Results: AKI with an incidence of 23.3% (35 patients) was not associated with an early elevation of HO-1 after CPB in all patients (P=0.88), whereas patients suffering from AKI developed a second burst of HO-1 24 hours after CBP. In patients without AKI, the HO-1 concentrations dropped to baseline values (P=0.031). Furthermore, early HO-1 induction was associated with CPB time (P=0.046), while the ones 24 hours later lost this association (P=0.219). Conclusion: The association of the second HO-1 burst 24 hours after CBP might help to distinguish between the causality of AKI in patients undergoing CBP, thus helping to adapt patient stratification and management. Keywords: acute kidney injury, cardiac surgery, heme oxygenase-1, cardiopulmonary bypas
    corecore